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Abstract

In this thesis, first a cubic fractional transformation (CFT) is used for the con-

struction of S-box. The S-boxes are used to increase the confusion between the

ciphertext and the key. The S-boxes are assessed using standard tests suit which

includes nonlinearity, strict avalanche criterion, bit independence criterion, linear

approximation probability and differential probability. The study of image en-

cryption has grown in popularity and interest in the modern technological era.

Image encryption ensures the secure transmission of images by converting recog-

nizable images into unrecognizable ones. A new image encryption method based

Substitution-box (S-box) and Logistic map is proposed. This S-box is used for the

pixel values modification to generate element of non-linearity. After this, these

modified values are further diffused with two other random sequences, generated

by CFT. Finally the scrambling process with the help of XOR Boolean operation

a random sequences generated by Logistic map are applied to the components of

pre-encrypted image to gets the encrypted image. The use of Substitution-box

(S-box) and Logistic map based image encryption scheme shows good results for

key space analysis, key sensitivity, correlation analysis, number of pixel change

rate (NPCR), unified average changing intensity (UACI), entropy analysis and

histogram analysis. Security analysis demonstrate the good performance of the

algorithm (1), (2) and (3) as a secure and effective communication method for

images.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgement vi

Abstract vii

List of Figures x

List of Tables xi

Abbreviations xii

Symbols xiii

1 Introduction 1

1.1 S-Boxes in Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Evaluation for Good S-boxes . . . . . . . . . . . . . . . . . 3

1.2 Image Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Software Tools For S-box Analysis . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10

2.1 Cryptology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Galois Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Boolean Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Properties of Boolean Functions . . . . . . . . . . . . . . . . 24

2.5 Cryptographic Properties of a Strong S-box . . . . . . . . . . . . . 29

3 S-box Construction Using Cubic Fractional Transformation (CFT) 35

3.1 Construction of S-box . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Cubic Fractional Transformation (CFT) . . . . . . . . . . . 36

viii



ix

3.1.2 Inverse S-box . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Properties and Analysis of the Proposed S-box . . . . . . . . . . . . 39

4 Logistic Map and S-box Based Image Encryption 44

4.1 Basic Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Digital Image . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1.1 Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Component of Image Encryption Cryptosystem . . . . . . . 45

4.2 Chaotic Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Lyapunov Exponent . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Bifurcation Diagram . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Logistic Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Image Encryption Algorithm . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Encryption Algorithm (Gray-scale) . . . . . . . . . . . . . . 50

4.5 Decryption Algorithm (Grayscale) . . . . . . . . . . . . . . . . . . . 53

4.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.1.1 Key Space . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.1.2 Key Sensitivity Analysis . . . . . . . . . . . . . . . 61

4.6.1.3 Differential Analysis . . . . . . . . . . . . . . . . . 61

4.6.1.4 Correlation Coefficients Analysis (CCA) . . . . . . 62

4.6.1.5 Entropy Analysis . . . . . . . . . . . . . . . . . . . 63

4.6.1.6 Histogram Analysis . . . . . . . . . . . . . . . . . . 64

5 Conclusion 68

Bibliography 69



List of Figures

1.1 Classification of image encryption algorithm . . . . . . . . . . . . . 4

2.1 Symmetric-key encryption . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Asymmetric-key encryption . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Clasification of cryptology . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Flow chart of proposed S-box . . . . . . . . . . . . . . . . . . . . . 37

4.1 Lyapunove exponent of Logistic map . . . . . . . . . . . . . . . . . 48

4.2 Bifurcation diagram for the Logistic map with iterations = 65536 . 49

4.3 Flow chart of image encryption algorithm . . . . . . . . . . . . . . 53

4.4 Flow chart of image decryption algorithm . . . . . . . . . . . . . . 55

4.5 Results of Clock Image encryption and decryption algorithm: (a)
plainimage, (b) Encrypted Image, (c) Decrypted Image . . . . . . . 59

4.6 Results of Chemical Plant image encryption and decryption algo-
rithm: (a) plainimage, (b) Encrypted Image, (c) Decrypted Image
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Key sensitivity test for Clock: (a) Plainimage (b) Encrypted image
(c) Decrypted image by slightly changed key . . . . . . . . . . . . 61

4.8 The following is the encryption result for the grayscale image of
Clock: (a) Plainimage (b) Encrypted image (c) Histogram of
plainimage (d) Histogram of encrypted image . . . . . . . . . . 65

4.9 Histogram analysis of chemical plant plainimage and cipherimage . 65

4.10 Histogram analysis of girl plainimage and cipherimage . . . . . . . 66

4.11 Histogram analysis of house plainimage and cipherimage . . . . . . 66

x



List of Tables

2.1 Addition table of integer in mod 8 . . . . . . . . . . . . . . . . . . . 17

2.2 Multiplication table of integers mod 8 . . . . . . . . . . . . . . . . . 17

2.3 Truth Table of XOR, AND functions . . . . . . . . . . . . . . . . . . . 25

2.4 The Hamming distance of two Boolean functions “f” and “g” . . . 27

2.5 Truth table of WHTf . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 S-box fixed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 S-box opposite fixed point . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 S-Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Inverse S-Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Comparing the non-linearity values of various S-boxes . . . . . . . . 40

3.4 S-box and non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 BIC Value of S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 SAC Value of S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 DP Value of S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 UACI and NPCR values of encrypted images . . . . . . . . . . . . . 62

4.2 Two adjacent pixels’ correlation coefficient in a plain and cipher
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Entropy analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



Abbreviations

AES Advance Encryption Standard

AI Algebraic Immunity

ANF Algebraic Normal Form

BIC Bits Independence Criterion

CI Correlation Immunity

CC Correlation Coefficients

CFT Cubic Fractional Transformation

DES Data Encryption Standard

DP Differential Probability

GCD Greatest Common Divisor

LFT Linear Fractional Transformation

LE Lyapunov Exponent

LP Linear Probability

MATLAB Matrix Laboratory

NPCR Number of Pixel Change Rate

RC4 Rivest Cipher 4

RSA Rivest-Shamir-Adleman

SET S-box Evalution Tool

SAC Strict Avalanche Criterion

UACI Unified Average Changing Intensity

WHT Walsh Hadamard Transformation

xii



Symbols

C Cipherimage

C Ciphertext

γ Control Parameter of Logistic Map

D Decryption Algorithm

E Encryption Algorithm

Λ Lyapunov Exponent

n Number of Rows

m Number of Columns

P Plaintext

I Plainimage

Z Set of Integers

R Set of Real Number

Zm Set of Integer under Modulo m

Q Set of Rational Number

xiii



Chapter 1

Introduction

How to secure personal secret information has been a problem for both states

and individuals since the beginning of secure communication. Then, the think

tanks of these states gather to develop a mechanism to protect the transfer of

information of the relevant secret message from them to their loyalists. In the

modern era, cryptography technology provides a solution for protecting secret in-

formation/messages from unauthorized resources. In cryptography, the original

information is known as plaintext (P), while the codded information is known as

ciphertext (C). The method of protecting information/messages during transmis-

sion so that only the intended person can read, change, and process it.

In cryptography, the methods for protecting information generally include an algo-

rithm and a key. An encryption algorithm first converts the original information

into some type of coded version of it, making it unintelligible to someone who

is not supposed to receive it. This process ensures that communication is done

securely. Once the information has been encrypted, it is able for transmission over

a public network. To make the information readable, the receiver also does some

tasks. He decrypts the information using the decryption key and algorithm. Cae-

sar Cipher [1] is the simplest and most well-known example of such a technique. It

works on the principle of substitution, where each alphabet is changed for another

alphabet, or, to put it another way, each letter is moved a predetermined number

of positions within the alphabet. Other algorithms, like mono-alphabetical, four

1



Introduction 2

square cipher [2], playfair cipher [3] and hill cipher [4], etc have been frequently

utilized.

Based on key management, cryptography can be divided into two categories: sym-

metric key cryptography and asymmetric key cryptography [5]. In symmetric key

cryptography, a single key is used for both data encryption and decryption. To

overcome the remarkable key problems in symmetric key cryptography, Diffie-

Hellman in 1976 introduced [6] asymmetric key cryptography. Asymmetric key

cryptography uses two different keys to perform encryption and decryption, so

knowing one key does not mean necessarily knowing the other.

1.1 S-Boxes in Cryptography

In cryptography, a substitution box (S-Box) is an essential component of symmet-

ric key algorithms. They are frequently utilized in block ciphers to conceal the

connection between the key and the ciphertext, which is Shannon’s property of

confusion and diffusion [7]. The concept of confusion and diffusion was first intro-

duced by Claude Shannon in 1949 [7]. According to Claude Shannin’s theory:

Confusion refers to making the relationship between the key and the ciphertext

as complex and as involved as possible.

Diffusion refers to the property that redundancy in the statistics of the plaintext

is ‘dissipated’ in the statistics of the ciphertext.

In block cipher, S-box is an important component. S-boxes are frequently chosen

with care to avoid cryptanalysis. An S-box is a non-linear component in symmet-

ric block ciphers that uses look-up tables to give the confusion property in the

cryptosystem. As a result, in cryptographic methods, constructing an S-box with

strong cryptographic characteristics is crucial.

The substitution process converts the input bits to the output bits after a number

of layers of substitutions, hence produce the ciphertext. To evaluate the strength

and confusion-creating ability of an S-box, the bit change patterns at the output,

that is based on a single or more bit changes at the input, must be examined.

S-boxes are look-up tables that represent vectorial Boolean functions. An S-box
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takes a tiny block of bits and replaces it with another block of bits. To make de-

cryption effective, this substitution should be one-to-one. S-box converts n input

bits into m output bits. The use os S-box as look-up table will give 2n words, each

with m bits. As employed in the Data Encryption Standard (DES) [8], a 4-bit

S-box is a box of 24 = 16 components with hexadecimal values ranging from 0 to

F that is randomly organised. Similarly, the number of elements in an 8-bit S-box

is 28 = 256, with values ranging from 0 to 255, as used in the Advance Encryption

Standard (AES) [9]. The output length can either be the same as the input length,

as in AES [9], or different, as in DES [8, 10]. To make a cryptosystem strong, to

constructed S-box it must be ensured that each output bit dependents on each

input bit.

1.1.1 Evaluation for Good S-boxes

The structural simplicity, rapid encryption and decryption speeds, and resistance

against known as cryptanalysis techniques are all desired features of an S-box.

Since 1976, many researchers have analyzed the behavior of constructed S-boxes.

The features listed below are commonly recognised as important criteria for eval-

uating good S-boxes.

1. Bijection Property

2. Non-linearity

3. Strict Avalanche Criterion (SAC)

4. Differential Probability (DP)

5. Linear Probability (LP)

6. Bits Independence Criterion (BIC)
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1.2 Image Encryption

In the modern era, with the rapid development of information technology, neces-

sitate the methods for the protection of data specially that containing images.

The protection of sensitive image based data from unauthorized source is know as

image encryption. A digital image is altered in a way that it become completely

different from the original image and cannot be viewed directly. When the image

is to be viewed, then it should be converted back into the original form through the

decryption algorithm. Many researcher have proposed image encryption methods

to improve the protection of digital images from unauthorized access. Ullah et

al. [11] used a novel scheme to encrypt images using S-box and chaotic system.

Fridrich [12] suggested a chaotic map based image encryption scheme.

Figure 1.1: Classification of image encryption algorithm

Image encryption can be classified into two parts based on its domain. One is called

full encryption algorithm and the other is called partial encryption algorithm [13].

As the name suggests, full image encryption algorithm encrypts the full image and

partial encryption algorithm encrypts only a part of the image instead of the full

image. Both of these types of algorithms can be further classified into frequency

domain and spatial domain. The frequency domain encryption algorithms are
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based on the transform function, such as fractional Fourier transform, quantum

Fourier transform and reciprocal-orthogonal parametric transform. The spatial-

domain encryption algorithms are based on the SPN (Substitution Permutation

Network) that uses substitution and permutation to change pixel value and pixel

position of the image respectively. Figure 1.1 show the encryption algorithm and

its further classification.

1.3 Literature Review

In modren block ciphers an S-box is usually used to conceal the relationship be-

tween the ciphertext and the key, thus ensuring the Shannons [7] property of Con-

fusion and diffusion. Therefore an S-box has a significant role in cryptography,

consequently, it is vital to utilize a secure S-box, before using it in cryptography.

Many techniques are use to create S-boxes with good cryptographic properties.

Wang et al. [14] suggested a novel approach for the construction of an S-box using

chaotic tent map. Tang et al. [15, 16] construct different S-boxes using chaotic

maps. Zhang et al. [17] constructed an S-box by spatiotemporal chaotic system.

Khan et al. [18] used chaotic partial differential equation to construct an S-box.

Researchers and cryptographers proposed many methodologies and techniques for

the construction of cryptographically strong S-boxes. In [19–25] many S-boxes

were created by different scholars.

Research in this area has revealed that any reliable encryption method that use S-

boxes generate S-boxes with cryptographically desired properties such as avalanche

criteria, high non-linearity and bits independent criteria among others [26]. As a

result, several approaches for the creation of this nonlinear component with all of

these desirable characteristics have been proposed by researchers. To construct

this nonlinear component, these approaches uses a variety of mathematical struc-

tures. Such as finite field, Galois ring, elliptic curves, and symmetry groups are

all well-known mathematical structures [27].

In [28], Dragomir et al. proposed a method for constructing database or reposito-

ries systems of S-boxes with strong cryptographic topographies. These repositories
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can be of great assistance in providing data and information security while cus-

tomising block cyphers. In [29] author created a cryptographically good S-box

based on the chaos theory and travelling salesman problems. Ahmad at el. [30]

proposed a novel approach to construct cryptographically robust bijective S-boxes

based on a new hyperchaotic system. When compared to other systems used for

S-box construction, it was found that the new hyperchaotic system seemed to have

good characteristics. Adams et al. [31] create s-boxes that are of bijection, SAC,

BIC, NL, etc. A strong S-box design using chaotic maps has been proposed by

Ozkaynak and Ozer [32]. They used the Lorentz system for the chaotic map and

the proposed methodology is examined and evaluated against cryptographic cri-

teria. The analysis results show the high reliability of the proposed cryptosystem,

which is ideal for secure communication. Farwa et al. [33] proposed a simple but

effective approach for generating an S-Box based on linear fractional transforma-

tion (LFT). The proposed S-box were analyzed for cryptographic properties such

as nonlinearity (NL), bit independence criterion (BIC), strict avalanche criterion

(SAC), linear probability (LP), differential probability (DP), etc.

The communication of data and information has grown to be a crucial compo-

nent of modern technology and is now regarded as one of an individual or an

organization’s most valuable assets. As a result, information security has become

extremely important in present-day sciences. Researchers are focused on develop-

ing effective and secure image encryption algorithms because of the rapid rise in

image transmission. Researchers analyse, identify, and solve problems in the real

world using image-based data. Wang at el. [34] suggests a new method for image

encrypting images that is based on dynamic random growth and hybrid chaotic

maps. Author uses dynamic random growth technique and the Arnold cat map

cofuse the original image. In 2010 Patidar et al. [35] proposed a “substitution-

diffusion based image encryption scheme” utilising chaotic logistic and standard

maps. The proposed scheme was strong because it had properties of confusion and
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diffusion. Francois et al. [36] in 2012 proposed a new image encryption algorithm

that is based on the coupling of a chaotic function and the XOR operator. The ma-

jor factors of his encryption algorithm were its capacity for producing a large key

space, its ability to produce images with any entropy structure, and its confusion

and diffusion properties.

A multiple image encryption method using the discrete wavelet transformation

and nonlinear fractional mellin transformation was presented by Pan et al. [37].

Khan et al. [38] proposed an algorithm for constructing the nonlinear S-box used

in image encryption algorithm. In the process of constructing nonlinear substitu-

tion components for image encryption, the chaotic Boolean bit function is used.

Farwa et al. [39] proposed a new and reliable image encryption scheme that use

then Arnold transform and algebraic S-box for scrambling. The proposed image

encryption method is very easy to use and very efficient. In 2020 Lidong et al. [40]

proposes a novel triple-image encryption scheme based on S-box, chaotic system

and image compression. The security analysis shows tha the proposed scheme can

effectively resist common cryptographic attack. Ali and Ali [41] proposed a new

scheme based on chaotic maps for encryption using substitution, Boolean opera-

tion and permutation. In 2022 another scheme was proposed by Ali and Ali [42]

for image encryption that uses a dynamic chaotic map and S-box.

These days, S-boxes are frequently used for security purposes and image encryp-

tion. Therefore, it is very important for the encryption algorithm to construct a

good S-box. A good S-box is one that fulfills all cryptoghrapic properties.

1.4 Software Tools For S-box Analysis

A number of tools are available for investigating S-box characteristics. The main

issue in those tools are: (i) not publicly available (ii) making them inaccessible

to the general public (iii) Variation of results for the same test in different tools.
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Here is a list of freely available tools for evaluating Boolean functions or S-boxes.

1. Boolfun Package in R. [43] R is a statistical computing and graphics

environment that is free to use. It’s compatible with Mac OS, Windows,

and UNIX. “Albeit” the default version of R doesn’t permit the evaluation

of Boolean functions. A package called Boolfun may be loaded to offer

functionality for the cryptographic analysis of Boolean functions [44, 45].

2. Boolean Functions in Sage. [46] Sage is a free and open-source mathe-

matics software. Boolean functions in Sage module allows you to examine

the cryptographic properties of Boolean functions. Most significant crypto-

graphic features associated with differential and linear properties of Boolean

functions may be evaluated with this tool.

3. S-boxes in Sage. [46] Sage is software that permits you to treat S-boxes

algebraically. This module has a lot of features, but when it comes to cryp-

tographic properties, the only ones that can be calculated are the linear

approximation matrix and the difference distribution Table.

4. VBF Library. [47] VBF stands for Vector Boolean Functions. Library

is also included for completeness. Zufiria and Alverez-Cubero proposed a

method for cryptographically evaluating vectorial Boolean functions, that

can be used to determine various S-box properties.

5. S-box Evalution Tool (SET) [48] stands for S-box Evaluation Program is

an American National Standards Institute (ANSI) C-based tool for analysing

the cryptographic properties of S-boxes and Boolean functions. This tool

was developed by Stjepan Picek [48] and his colleagues to assess the crypto-

graphic characteristics of S-boxes and Boolean functions. It’s a free, open-

source mathematics tool that is basic in nature and easy to use.
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1.5 Thesis Objective

The objective of this thesis is to investigate the scheme proposed by Zahid et al.

[49] for the construction of a strong S-box. The proposed scheme is based on cubic

fractional transformation (CFT). On the bases of best knowledge it can be said

that this method is the first method to create an S-box from the cubic fractional

transformation (CFT). The properties of the generated S-box are examined, as

well as the cryptographic strength of the constructed S-box, using the MATLAB

and SET tools.

After successful construction of S-box of the reviewed scheme [49] it is then used

for image encryption, by utilizing Logastic map. First, propoed S-box is used to

substitute the pixel value of the digital image. Then two sequences are construct

by using the same method which used for construction of S-box are construct.

The sequences are utilized for the purpose of row and column wise circular shift.

After this, Logistic map is iterate to generate a random sequence. At the end,

cipherimage obtained by scrambling process with the help of random sequence.

The remaining thesis is organized as follows

• Chapter 2 This chapter includes discussion on the basic mathematical con-

cepts that are useful in cryptography such as Boolean functions, Galois field,

their general properties, and how they contribute in the creation of strong

S-boxes. Various cryptoraphic properties according to the general design

principles of S-boxes are also explained.

• Chapter 3 describes the concept of CFT and introduces a method for con-

structing S-boxes using CFT. After that, the properties of proposed S-box

are analysed. The properties of constructed S-box are checked using MAT-

LAB and S-box Evaluation Tool (SET).

• Chapter 4 describe image encryption scheme by using the proposed S-box

constructed in Chapter 3 and Logistic map. Moreover, some security analysis

of proposed scheme are discussed.

• Chapter 5 gives the conclusion to the work of Chapter 3 and Chapter

4.



Chapter 2

Preliminaries

This chapter will discuss and explain an introduction to cryptology and some

basic mathematics that are useful in cryptography, as well as the same features

of S-boxes. In Section 2.1, brief introduction of cryptography and some of the

fundamental concepts of cryptography. Section 2.2 some basic definitions (Group,

Ring, Field and Finite Field etc.) are described with examples. In sections 2.3

and 2.4 give some basic idea of Galois Field and Boolean function. In section 2.5,

some cryptographic properties of strong S-box are described.

2.1 Cryptology

Cryptology is the study of secret communication. The word cryptology is derived

from the Greek words “kryptos” which means “hidden”, and “logos”, which means

“word.” In cryptology, communication between two people is made secure. One of

them is the sender (Alice) and the other one (Bob) is the receiver. The sender

converts the data into incomprehensible form using secret keys (which are pieces

of information that are only known to them) and sends it to the receiver. After

receiving the data Bob got the original form of data using the secret key that

10
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Alice used to incomprehensible the data. The original message is referred to as

plaintext, while the incomprehensible message is referred to as ciphertext.

Cryptology is divided into two main categories:

1. Cryptography

2. Cryptanalysis

Cryptography is the process of converting original message or data into an in-

comprehensible text, and vice versa. It is a method of collecting and transmitting

data in a particular configuration that can only be pursued by those who need it.

Cryptography can also be used to verify user identity and protect data from theft

or tampering.

In earlier cryptography, people used synonymously word in the place of different

words for encryption, but currently, it is mostly based on mathematical hypotheses

and computer applications. Many applications, including financial transactions,

e-commerce transactions, and computer passwords use cryptography.

Plaintext, Ciphertext, Encryption Algorithm, Decryption Algorithm, and Key are

the five essential components of a conventional cryptosystem.

1. Plaintext: It is the original form of data or message.

2. Ciphertext: It is the coded form of data or message.

3. Encryption Algorithm (E): It used to convert plaintext into ciphertext.

4. Decryption Algorithm (D): It sued to convert ciphertext into plaintext

data.

5. Key: It is the special information used in encryption and decryption algo-

rithms.

Two types of cryptographic techniques are used in general:

• Symmetric Key Encryption



Preliminaries 12

• Asymmetric Key Encryption

Symmetric Key Encryption is a type of encryption in which both the sender

and the recipient use the same key to encrypt and decrypt data. Secret-key en-

cryption is another name of symmetric key encryption. The sender uses the key to

encrypt plaintext and sends it to the recipient. The receiver, on the other hand,

uses the same key to decrypt the encrypted message and recover the plaintext.

Various examples of symmetric-key encryption algorithms are Data Encryption

Standard (DES) [8], Advanced Encryption Standard (AES) [9], Triple DES [5],

RC4 [50].

Figure 2.1: Symmetric-key encryption

The following encryption methods is used in symmetric key encryption:

1. Stream Cipher: A stream cipher is a text encryption symmetric-key scheme

in which a cryptographic algorithm is applied to each binary digit in a data

set by considering one bit at a time.

2. Block Cipher: A block cipher is a symmetric key encryption algorithm

that changes a block of plaintext into an equal size block of ciphertext. The

size of the block is fixed in the provided encryption technique. The block

size has no effect on the encryption scheme’s strength. The strength of the

cipher is determined by the length of the key.
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Asymmetric-key Encryption is a type of encryption in which data is encrypted

and decrypted using a pair of keys. Asymmetric-key Encryption is also called

public-key encryption.The first key is known as the public key, and it is accessible

to everyone. The second key is known as the private key, and it must be kept

hidden. The sender encrypts the plaintext with the public key, while the receiver

decrypts ciphertext with the private key. Both keys are mathematically linked, but

it is impossible to compute the private key using the public key. As a result, the

receiver may be able to disseminate the public key widely. The public key can be

used by anyone to encrypt communications for the receiver, but only the receiver

can decode the information by using the private key. Examples of asymmetric-key

encryption are McEliece [51], ElGamal [52] ,RSA [53]

Figure 2.2: Asymmetric-key encryption

Cryptanalysis is the process of breaking codes to decode the information en-

coded. Cryptanalysis is normally thought of as looking for defects in the underly-

ing mathematics of a cryptographic system; however, looking for implementation

flaws for example side-channel threats or low entropy inputs is also part of the

process. The examined information is utilized to investigate the system’s hidden

points. Somebody who endeavors to play out this undertaking is known as a crypt-

analyst. Cryptanalyst utilizes a algorithm to decode ciphertext without knowing

the plaintext sources or encryption keys. In addition, a cryptanalyst attempts to

improve existing techniques by detecting holes in a security protocol. This can
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be done by locating the key and enhancing the procedures if they lack the four

properties of authentication, integrity, confidentiality, and non-repudiation.

Figure 2.3: Clasification of cryptology

2.2 Mathematical Background

To understand the construction and performance of the S-boxes, some basic con-

cepts of group, Ring, Field, Finite Field and Galois field are presented.

Definition 2.2.1.

Consider u and v be two integers where v 6= 0. If there exists a number w such

that u = vw, we say that v divides u or that v is the divisor of u. We write v|u

to represent that v divides u. If v does not divides u, then it written as v 6 |u.

Definition 2.2.2.

Consider u and v to be two positive integers and w is called greatest common

divisor (GCD) of both u and v, if w is their largest number which divides both

u and v then it is represented as:

gcd (u, v) = w
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If greatest common divisor of u and v is one, they are said to be relatively prime.

The Euclidean Algorithm is helpful for determining the greatest common divi-

sor of two positive numbers.

The Euclidean Algorithm for computing gcd (a,b) is as follows:

gcd (u, b = v)

1. X = u ; Y = v

2. if Y = 0 return X = gcd (u, v)

3. Z = X mod Y

4. X = Y

5. Y = Z

6. go to 2

Example 2.2.3.

Compute gcd of (4202, 3520). Evaluate gcd by using the Euclidean Algorithm.

First divide 4202 by 3520.

4202 = 3520(1) + 682

Next, divide 3520 by the remainder 682 and continue this process.

3520 = 682(5) + 110

682 = 110(6) + 22

110 = 22(5) + 0

So gcd (4202, 3520) = 22.

Example 2.2.4.

Compute gcd(5429, 1567).
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Using the Euclidean Algorithm.

5429 = 1567(3) + 728

1567 = 728(2) + 111

728 = 111(6) + 62

111 = 62(1) + 49

62 = 49(1) + 13

49 = 13(3) + 10

13 = 10(1) + 3

10 = 3(3) + 1

3 = 1(3) + 0

Hence gcd (5429, 1567)=1, therefore (5429,1567) are relatively prime.

Definition 2.2.5.

Fundamental Theorem of Arithmetic is define as: “Every natural number

greater than 1 can be written as a product of primes, and the expression of a

number as a product of primes is unique except for the order of the factors” [54].

Let X be a composite number then it can be written as:

X = ym1
1 × ym2

2 × ym3
3 × · · · × ymn

n

where mn ≥ 0 and y1, y2, y3, · · · , yn are prime numbers, written in an ascending

order y1 ≤ y2 ≤ y3 ≤ · · · ≤ yn. If prime number are same then they can be

combined to give power of prime number.

Example 2.2.6.

Factorization of 20 and 15 can be performed as:

20 = 2× 2× 5 = 22 × 5



Preliminaries 17

15 = 3× 5

Definition 2.2.7.

The Modular arithmetic is a system of arithmetic for integers, in which numbers

“wrap around” when reaching a given fixed number, this given number is called

the modulus.

Let u, v and w are integers and w is modulus then mathematically written as:

u ≡ v mod w

Table 2.1: Addition table of integer in mod 8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

Table 2.2: Multiplication table of integers mod 8

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

Example 2.2.8.

Addition of element of the set of residue classes modulo 8 and multiplication of

element of the set of residue classes modulo 8 are shown in Table 2.1 and Table

2.2, respectively.
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Definition 2.2.9.

An integer v is said to be multiplicative inverse of another integer u modulo

m, if uv ≡ 1 mod m. The multiplicative inverse of a number u under modulo m

exist if and only if gcd(u,m) = 1

Example 2.2.10.

The multiplicative inverse of 23 ≡ 2 mod 7 under the modulo 7.

The gcd(23, 7) = 1, therefore multiplicative inverse of 23 under the modulo 7

exists.

23× 0 ≡ 0, mod 7

23× 1 ≡ 2, mod 7

23× 2 ≡ 4, mod 7

23× 3 ≡ 6, mod 7

23× 4 ≡ 1, mod 7

Hence multiplicative inverse of 23 under the modulo 7 is 4.

Definition 2.2.11.

A binary operation ? on a set H is a function ? : H × H → H such that for

every (u ? v) ∈ H × H the binary operation ? assigns a unique element w ∈ H,

then we say that the pair (H, ?) has a binary structure.

Definition 2.2.12.

The set H under operation ? is called a groupoid if it is closed with respect to ?.

Example 2.2.13.

The set of even number E and the set of odd number O are groupoids with respect

to addition.

Definition 2.2.14.

The set H under operation ? is called a semi group if:

i) It is closed with respect to ?.

ii) It is associative with respect to ?.
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Example 2.2.15.

Set of natural number N is a semi group with respect to addition.

Definition 2.2.16.

The set H under operation ? is called a monoid if:

i) It is closed with respect to ?.

ii) It is associative with respect to ?.

iii) It has an identity element with respect to ?.

Example 2.2.17.

Set of natural number N is a monoid with respect to multiplication.

Definition 2.2.18.

The set H and ? is an operation applied on it, then the structure (H, ?) is said to

be group if;

i) It is closed with respect to ?.

ii) It is associative with respect to ?.

iii) It has an identity element with respect to ?.

iv) Every element of H has an inverse element in H with respect to ?.

Definition 2.2.19.

A group under the operation of ? is said to be abelian or commutative if it

holds commutative property.

Example 2.2.20.

The following are the example of group:

i) Integers (Z) is a group under the operation of addition.

ii) R− 0 is a group under the operation of multiplication.
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iii) The set of matrices M of order (m×n) i.e. M(m×n) (R) is a group under the

operation of addition.

iv) The set of integer under modulo m Zm is a group under the operation of

addition.

Definition 2.2.21.

For a nonempty set R with two binary operations ‘+’ and ‘·’ (usually written as

addition and multiplication), than the structure (R,+, ·) is called ring if;

i) The set R under the binary operation of addition is an abelian group.

ii) It holds the associative property with respect to ‘·’.

u · (v · w) = (u · v) · w ∀ u, v, w ∈ R

iii) Distributive law holds in R. i.e ∀u, v, w ∈ R

u · (v + w) = (u · v) + (u · w) (Left distributive law)

(v + w) · u = (v · u) + (w · u) (Right distributive law)

Example 2.2.22.

The following are the example of ring:

i) The set of real numbers R forms a ring (R,+, ·).

ii) The set of integers (Z) forms a ring (Z,+, ·).

iii) The set Zn of integers class modulo n forms a ring (Zn,+, ·).

iv) The set of rational number Q forms a ring (Q,+, ·).

Definition 2.2.23.

For a non-empty set K with two operations ‘+’ and ‘·’, then the structure (K,+, ·)

is said to be field if and only if the following conditions are satisfied:
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i) The set K forms an abelian or commutative group with respect to addition.

ii) K −{0} forms an abelian or commutative group with respect to multiplica-

tion.

iii) K holds distributive law. i.e ∀ u, v, w ∈ K

u · (v + w) = (u · v) + (u · w) Left distributive law

(v + w) · u = (v · u) + (w · u) Right distributive law

Example 2.2.24.

The following are the example of field:

i) The set of real number R forms a field (R,+, ·).

ii) The set of rational number Q forms a field (Q,+, ·).

iii) The set of complex number C forms a field (C,+, ·).

iv) If K = {u+ v
√

3 ∀u, v ∈ R}, then K is a field.

v) The set of Zp is a field (Zp,+, ·), where p is a prime number.

Definition 2.2.25.

A finite field is a field that has a finite number of elements.

2.3 Galois Field

A field with finite number of element is called Galois Field. The name of Galois

field is in honour of the French mathematician Evariste Galois (1811-1832) [55].

The number of elements in a Galois field is ‘yn’ where ‘y’ is prime number and

‘n’ is positive integer and denoted by GF (yn). For a prime number ‘y’ the set of

integer Zy = {0, 1, 2, 3, · · · y − 1} is called prime field and it is denoted by GF (y).

The Galois Field’s elements are defined as following:

GF (yn) = {0, 1, 2, 3, · · · , y − 1}∪
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{y, y + 1, y + 2, · · · , y + y − 1}∪

{y2, y2 + 1, y2 + 2, · · · , y2 + y − 1} ∪ · · ·

∪{yn−1, yn−1 + 1, yn−1 + 2, · · · , yn−1 + y − 1}

where ‘y’ and ‘n’ represent prime number and positive integer respectively. The

order of the field is ‘yn’ while the characteristics of the field is represented by ‘y’.

Each element has a polynomial of degree at most n− 1.

From a cryptographical point of view, these cases are particularly interested as

shown below:

• GF (y),with n = 1

• GF (2n),with y = 2

Definition 2.3.1.

The elements of GF (yn), are the polynomial of degree atmost n.

f(y) =
∑

aiy
i ∀ i = 0, 1, 2, · · ·n

where ai shows the coefficients and yi are variables, the degree of polynomial is

actually the highest power of w.

Definition 2.3.2.

The term irreducible polynomial refers to a polynomial m(w) that can not be

factorised as the product of more than one polynomials of lower degree. Other-

wise, it is known as “reducible polynomial”.

The polynomials w3 + w2 + 1, w4 + w + 1 and w5 + w3 + 1 are the examples of

irreducible polynomials over GF (2) whereas w3 + 1, w2 +w are reducible polyno-

mials over GF (2).

Example 2.3.3.

Consider an irreducible polynomial m(w) = (w8 + w6 + w5 + w4 + 1), and two

polynomials (w7 + w2 + 1) and (w6 + w4 + w2 + w + 1), then their product mod



Preliminaries 23

m(w) is:

(w7 + w2 + 1)(w6 + w4 + w2 + w + 1) mod (w8 + w6 + w5 + w4 + 1)

= (w13 + w11 + w9 + w7 + w3 + w + 1) mod (w8 + w6 + w5 + w4 + 1)

= (w4 + w3 + w2 + w) mod (w8 + w6 + w5 + w4 + 1)

Example 2.3.4.

Consider an irreducible polynomial m(w) = (w8 + w6 + w5 + w4 + 1), and two

polynomials (w7 +w4 +w2 + 1) and (w4 +w3 +w, then their product mod m(w)

is:

(w7 + w4 + w2 + 1)(w4 + w3 + w) mod (w8 + w6 + w5 + w4 + 1)

= (w11 + w10 + w7 + w6 + w4 + w) mod (w8 + w6 + w5 + w4 + 1)

= (w6 + w5 + w4 + w3 + w2) mod (w8 + w6 + w5 + w4 + 1)

The following are 30 irreducible polynomials [56] of degree 8 with coefficients in

GF(28) as given below:

1. w8 + w7 + w6 + w5 + w2 + w + 1,

2. w8 + w7 + w6 + w5 + w4 + w + 1,

3. w8 + w7 + w6 + w5 + w4 + w2 + 1,

4. w8 + w7 + w6 + w5 + w4 + w3 + 1,

5. w8 + w7 + w6 + w4 + w2 + w + 1,

6. w8 + w7 + w6 + w4 + w3 + w2 + 1,

7. w8 + w7 + w6 + w + 1,

8. w8 + w7 + w6 + w3 + w2 + w + 1,

9. w8 + w7 + w5 + w4 + w3 + w2 + 1,

10. w8 + w7 + w5 + w + 1,

11. w8 + w7 + w4 + w3 + w2 + w + 1,

12. w8 + w7 + w5 + w3 + 1,

13. w8 + w7 + w5 + w4 + 1,

14. w8 + w7 + w3 + w + 1,

15. w8 + w7 + w3 + w2 + 1,

16. w8 + w7 + w2 + w + 1

17. w8 + w6 + w4 + w3 + w2 + w + 1

18. w8 + w6 + w5 + w4 + w2 + w + 1

19. w8 + w6 + w5 + w4 + w3 + w + 1

20. w8 + w6 + w5 + w + 1

21. w8 + w6 + w5 + w2 + 1

22. w8 + w6 + w5 + w3 + 1
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23. w8 + w6 + w5 + w4 + 1

24. w8 + w6 + w3 + w2 + 1

25. w8 + w5 + w4 + w3 + w2 + w + 1

26. w8 + w5 + w3 + w2 + 1

27. w8 + w5 + w4 + w3 + 1

28. w8 + w5 + w3 + w + 1

29. w8 + w4 + w3 + w2 + 1

30. w8 + w4 + w3 + w + 1

2.4 Boolean Function

A Boolean function is a mapping f : Bn → B, where n is non-negative integer

and B = {0, 1}. The name of Boolean function is given in honour of the British

mathematician G. Boole (1815-1864) [57]. A Boolean function can be written as

n-tuples (w1, w2, ....wn)→ {0, 1}, where wi ∈ B and 1 ≤ i ≤ n.

2.4.1 Properties of Boolean Functions

In cryptography, Boolean functions are important elements used for the construc-

tion for S-Box. There have been many criteria for designing Boolean functions

to resist for known cryptographic attacks. Boolean functions are widely utilized

in stream ciphers’ stream production mechanism etc. This section discusses some

important properties for the Boolean function that makes it very useful for the

cryptographic point of view.

Definition 2.4.1.

For a set B = {0, 1}, a linear Boolean function is a function f : Bn → B that

can be define as:

f(w1, w2, · · · , wn) = b1w1 ⊕ b2w2 ⊕ · · · ⊕ bnwn

where (b1, b2, · · · , bn) ∈ B and ⊕ is the XOR operation, biwi has AND Boolean

function on the ith bits of b and w [58]. The linear function is denoted by Lb(w).
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Definition 2.4.2.

An affine function is denoted by Ab,c(w) and defined as:

Ab,c(w) = Lb(w)⊕ c

where Lb(w) is linear Boolean function and c ∈ [0, 1]. In Affine Cipher affine

function over modulo ‘m’ is used to encrypt the plaintext. Affine cipher is a of

the simple example of substitution cipher. Affine cipher performs addition and

multiplication by using the function;

f(w) = Φw ⊕Ψ mod m

where Φ and Ψ are the secret keys which can also be written as (Φ,Ψ).

Definition 2.4.3.

If the number of zeros and ones in the corresponding truth table are equal, then

the Boolean function f : Bn → B is called balanced.

Table 2.3: Truth Table of XOR, AND functions

w1 w2 w1 · w2 w1 ⊕ w2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Example 2.4.4.

To provide a comparison of balanced and unbalanced functions, for this consider

the following two Boolean functions, XOR and AND defined as:

f1 = ⊕ : B2 → B

f2 = · : B2 → B

These function can be defined by the following truth table for two variables w1

and w2.
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The last column of Table 2.3 has equal number of zeros to number of ones, represent

that XOR function is balanced while the third column of the Table 2.3 has unequal

number of zeros and ones, represent that AND function is not balanced.

Definition 2.4.5.

In a binary sequence the total number of non-zero digits tells the Hamming

weight of that sequence. It is denoted by “H(w)”, where w ∈ [0, 1]n.

For example: w = 101001 then H(101001) = 3.

The Hamming distance between two boolean functions f(w), g(w) is defined

as follows:

d(f, g) = H(f(w)⊕ g(w))

Here,

f(w)⊕ g(w) = f(w0)⊕ g(w0)⊕ f(w1)⊕ g(w1)⊕ · · · ⊕ f(w2n − 1)⊕ g(w2n − 1)

where w = (w0, w1, w2, · · · , w2n − 1) ∈ Bn.

Example 2.4.6.

Consider two Boolean functions:

f(w) = 1 1 1 0 1 0 1 1

g(w) = 0 1 0 1 1 1 1 0

then the Humming distance between f and g is d(f ; g) = 5

Example 2.4.7.

Consider two Boolean functions with w = (w1, w2, w3)

f(w) = w1 · w2 · w3 and g(w) = w1 ⊕ w2 ⊕ w3

with input bits w1, w2, w3.

then the Hamming distance of these Boolean functions is

d(f ; g) = H(f(w)⊕ g(w))

= H(w1 · w2 · w3 ⊕ w1 ⊕ w2 ⊕ w3)
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Table 2.4: The Hamming distance of two Boolean functions “f” and “g”

w1 w1 w3 w1 · w2 · w3 w1 ⊕ w2 ⊕ w3 (f ⊕ g)

1 0 0 0 1 1

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 1 1 0

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 0 0

Thus from Table 2.4 Hamming distance of “f” and “g” is calculated as 3.

Definition 2.4.8.

The Boolean function’s Walsh-Hadamard transformation is denoted by the

symbol WHTf and is defined as:

WHTf (β) =
∑

(−1)f(w)⊕β·w ∀ β, w ∈ Bn

where B = {0, 1}n and β · w represent the inner product of vectors β and w.

Example 2.4.9.

Walsh Hadamard transform with Boolean function of,

f(w) = w1w2w3 ⊕ w1w4 ⊕ w2



Preliminaries 28

is given in the Table 2.5 below:

Table 2.5: Truth table of WHTf

w = w1w2w3w4 f(w) (−1)f(w) dim3 dim2 dim1 dim0

0 0 0 0 0 1 2 4 0 0

0 0 0 1 0 1 0 0 0 0

0 0 1 0 1 -1 -2 -4 8 8

0 0 1 1 1 -1 0 0 0 8

0 1 0 0 0 1 2 0 0 0

0 1 0 1 0 1 0 0 0 0

0 1 1 0 1 -1 -2 0 0 0

0 1 1 1 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 4

1 0 0 1 1 -1 2 4 4 -4

1 0 1 0 1 -1 0 0 0 4

1 0 1 1 0 1 -2 0 4 -4

1 1 0 0 0 1 0 0 0 -4

1 1 0 1 1 -1 2 0 -4 4

1 1 1 0 1 -1 0 0 0 0

1 1 1 1 1 -1 2 -4 4 -4

So the walsh transform of f is 12.

Definition 2.4.10.

A Walsh Hadamard matrix H is an “n×n” matrix with element ±1 of order n.

If first column and row of a Hadamard matrix are all one then its called normalized

[59]. The rows and column of Walsh Hadamard matrix are pairwise orthogonal.
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Hadamard matrices were first constructed by James Joseph Sylvester in 1867 [60].

The Walsh Hadamard matrices of dimension 2n are given by the recursive formula.

Some examples of Walsh Hadamard matrix are given below.

H(21) = H(2) =

1 1

1 −1



H(22) = H(4) =

H(2) H(2)

H(2) −H(2)

 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



H(23) = H(8) =

H(4) H(4)

H(4) −H(4)

 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


In general

H(2n) =

H(2n−1) H(2n−1)

H(2n−1) −H(2n−1)



2.5 Cryptographic Properties of a Strong S-box

S-box is an important tool of symmetric cryptographic algorithms. Its crypto-

graphic properties are important in many encryption scheme algorithms security

cipher such as AES [61], DES [10]. Diffusion and Confusion [7] are important

properties of a block cipher such as AES [61], DES [10], etc. Generally an S-box

has n×m bits in which n-bits are taken an input to produce m-bits as an output
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using some bijective function. Constructing an S-box that fulfills the linear and

differential characteristics is critical. There are well-known requirements that a

good S-box must meet in for the cipher to be resistant against differential and

linear cryptanalysis. A strong S-box has the following properties.

1. Balanced: If the number of zeros and ones in an S-box with n input and

m output bits are equal, then the S-box is balanced [62].

2. Non-linearity: The non-linearity of a Boolean function f(w) : Bn → B

indicates the number of bits that changed into the truth table to approach

the nearest affine function [33], where B = {0, 1}.

Non-linearity of an S-box ensures the protection against the attack of linear

cryptanalysis. Non-linearity of a Boolean function is represented by NL(f)

and calculated as:

NL(f) = 2n−1 − 1

2

(
max

(
WHTf (β)

))

where, WHTf (β) is the Walsh Hadamard transformation of Boolean function

f(w), which is calculated as:

WHTf (β) =
∑

(−1)f(w)⊕β·w ∀ β, w ∈ Bn

where β · w is the inner product of vectors β and w.

3. Bent Function: Rothaus introduced bent Boolean function in 1976 [63].

A bent function is a maximally nonlinear Boolean function with an even

number of variables.

4. Strict Avalanche Criterion (SAC): Webster and Tavares [64] proposed

the strict avalanche criterion (SAC) in 1985. The SAC is defined as the

output bit changed by 1
2

when a single input is changed. The value of SAC

nearer to 0.5 is deemed suitable.

A function f : Bm → Bn fulfills the SAC if ∀ i, j ∈ (1, 2, 3, · · · ,m) flipping

input bit i change the output j with the probability 1
2
. The SAC is satisfied
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by an S-box if and only if the following conditions are met:

1

2n
W (aeij ) =

1

2
∀ i, j

where

W (aeij ) =
∑
∀X∈Bm

aeij

and aeij ∈ B, where B = {0, 1}.

5. Bit Independence Criterion (BIC): Tavares and Webster [64] also in-

troduced the BIC. By the definition of BIC two output bits change indepen-

dently when a single input bit is inverted.

A function f : Bm → Bn fulfills the bit independent criterion if ∀ i, j, k ∈

{1, 2, 3, · · · ,m} with j 6= k, the change in an input bit ‘i’ causes a in two

output bits j and k independently.

“To measure the bit independence concept the correlation coefficient is needed

between the jth and kth components of the output difference string, which is

called the avalanche vector Aei. A bit independence parameter correspond-

ing to the effect of ith input bit change on the jth and kth bits of Aei is defined

as [65]

BIC(aj, ak) = max
1≤i≤n

|corr(aeij , a
ei
k )|

Overall, the bit independence criterion parameter for S-box function f is

then found as

BIC(f) = max
1≤j, k≤n
j 6=k

BIC(aj, ak)

which demonstrates how close f is to satisfying the BIC. BIC(f) takes

values in B. It is ideally equal to 0 and, in the worst case, it is equal to 1.”

6. Algebraic Degree A Boolean function f with n-variable can be represented

in various forms. One of the simplest form is representaed as polynomials

over GF (2). This is referred to as a Boolean function’s algebraic normal

form (ANF). This polynomial’s degree represents the algebraic degree or
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simply the degree of a Boolean function. The maximum algebraic degree of

a Boolean function with n-variable balanced function is n− 1 [66].

7. Correlation Immunity (CI): Siegenthaler [67] proposed correlation im-

munity of functions to protect against correlation attacks many shift register-

based stream ciphers. The n-variable Boolean function has correlation im-

munity if ∀ i ∈ {1, 2, 3, ..., n}

Prob(f(w1, w2, · · · , wn) = wi) =
1

2

for (w1, w2, · · · , wn) randomly picked from {0, 1}n.

The high correlation immunity value is a powerful tool for retaining against

the Siegenthaler correlation attack. [67]. The CI of the concept of statistical

independence is designed with a stronger constraint.

8. Algebraic Immunity (AI): Let g(w) ∈ Fn and there exists a Boolean

function h(w) ∈ Fn and h(w) 6= 0, then algebraic immunity is define as the

lowest degree of function h(w) such that

g(w)h(w) = 0 or
(
g(w)⊕ 1

)
h(w) = 0

where function h(w) is known as annihilator of f(w) if g(w)h(w) = 0.

Meier et al. [68] was the first to introduce AI. The expression AI
(
f(w)

)
represents the function f(w) algebraic immunity. The Boolean function used

in a cryptographic system needs to have high algebraic immunity in order

to fend off algebraic attacks. “It is well known that the algebraic immunity

of an n-variable Boolean function is upper bounded by n
2
” [69].

9. Fixed Points: For an n × m S-box S : GF (Bn) → GF (Bm) and for

w ∈ GF (Bn), then the point is called fixed point of S-box if

S(w) = w
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Example 2.5.1.

Consider a 2× 2 S-box with 2 Boolean functions as shown in Table 2.6

Table 2.6: S-box fixed point

GF (2) Binary format GF (2) S-box Binary format S-box

0 00 1 01

1 01 3 11

2 10 2 10

3 11 0 00

Here in the above Table 2.6, it can be seen that “1” is a fixed point of S-box.

10. Opposite Fixed Points: For an n×m S-box S : GF (Bn)→ GF (Bm) and

for w ∈ GF (Bn), the point is called opposite fixed point of S-box if

S(w) = w

where w is the bit-wise complement of w.

Example 2.5.2.

Consider a 2× 2 S-box with 2 Boolean functions as shown in Table 2.7

Table 2.7: S-box opposite fixed point

GF (2) Binary format GF (2) S-box Binary format S-box

0 00 1 01

1 01 2 10

2 10 3 11

3 11 0 00

In this example discussed in Table 2.7 “1” is an opposite fixed point of S-box.

Any S-box without fixed and opposite fixed points is considered as more

resistant to differential cryptanalysis attacks when compared to S-boxes with

fixed and opposite fixed points.
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11. Absolute Indicator and Sum of Square Indicator: The Boolean func-

tion f : GF (Bn)→ GF (B) with absolute indicator is defined as:

∆f(w) = max
a∈GF (Bn),a 6=0

| ∆f(w)(a) |

For a Boolean function f : GF (Bn)→ GF (B), the sum of square indicator

is defined as:

σf(w) =
∑

a∈GF (Bn)

(
∆f(w)(a)

)n
The above indicators are known as the “global avalanche characteristics”

of two Boolean function [70]. Where ∆f(w) is Auto-correlation (AC) of a

Boolean function f(w) and can be defined on all a ∈ GF (Bn) as:

∆f(w(a) =
∑

(−1)f((w)⊕f((w⊕a) where (w ∈ GF (Bn)

12. Linear Probability (LP): The S-box’s resistance against linear attacks is

evaluated by linear probability. When the nonlinearity of the S-box increases,

cryptanalysis attacks become more difficult.

“The value of LP of an S-box is eveluated as” [71]:

LP = max
Cw,Dw 6=0

∣∣∣∣#{w ∈ Z|w · Cw = S(w) ·Dw}
2n

− 1

2

∣∣∣∣
where Cw andDw are the input and output masks and Z = {0, 1, 2, ..., 2n−1}.

13. Differential Probability (DP): The S-box’s resistance against differen-

tial attacks is evaluated by differential probability. The value of DP of an

substitution box is calculated as:

DPh(∆d→ ∆x) = max
Cw 6=0,Dw

(#{d ∈ C|h(d)⊕ h(d⊕∆d) = ∆w}
2n

)
where C is the total number of inputs possible and 2n is the number of

elementes and ∆d and ∆y respectively, represent the input and output dif-

ferentials. [72].



Chapter 3

S-box Construction Using Cubic

Fractional Transformation (CFT)

Zahid et al [49], in 2019 proposed a method for constructing of efficient S-box by us-

ing cubic fractional transformation (CFT). This chapter discusses the techniques

of constructing an S-box using cubic fractional transformation. The simulation

and comparison analyses demonstrate that the suggested method for constructing

S-box yields effective S-box for use in block ciphers. S-box Evaluation Tool

(SET) [48] and MATLAB has been used to analyze the cryptographic charac-

teristics of the S-box.

3.1 Construction of S-box

Rapid progress in communication technology and transfer of sensitive information

through internent has become a challenge. For this purpose many beneficial en-

cryption techniques have been developed. There are two types of cryptographic

encryption algorithms: symmetric encryption algorithms and asymmetric encryp-

tion algorithms. AES [61] and DES [61] are the most popular symmetric encryp-

tion algorithms.

The literature that is currently available makes it clear that S-boxes generated

35
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using random approaches, such as chaos or some other pseudo-random source, are

not found to have strong cryptographic properties when compared to S-boxes gen-

erated using algebraic methods [73]. Another area that assists in the generation

of new S-Boxes is linear fractional transformation (LFT). In [33, 73–76] authors

propose effective algorithms to construct better S-boxes based on LFT. A LFT

can be define as:

L(w) =
v1w + v2
v3w + v4

, w ∈ Zn (3.1)

where, the four values v1, v2, v3, andv4 are from a finite field GF (28). Linear frac-

tion transformation is also called Mobius transformation.

3.1.1 Cubic Fractional Transformation (CFT)

As in Section 3.1 many techniques are mentioned that are used to contruct pro-

posed S-boxes. Many techniques have been used for construction of a strong

non-linear S-box such as the chaotic and algebraic structures. In this section, an

extended idea of LFT is used to generate an effective proposed S-box. This ex-

tended transformation is known as cubic fractional transformation (CFT). CFT

is given as:

F (w) =
1

uw3 + v
mod (2n + 1) where u, v, w ∈ Zn (3.2)

and Zn = {0, 1, 2, · · · , 2n − 1}, both u, v 6= 0 at the same time also uw3 + v 6= 0.

When using it to generate the output value F (w), this should be avoided. During

the operation of the proposed scheme, the existence of the CFT discontinuity point

is gingerly checked when creating the S-box elements. Because of nonlinear nature

of the CFT, it is frequently use in byte substitution. For the construction of the

S-box Equation (3.2) is utilized. For n = 8 so, Zn becomes {0, 1, 2, · · · , 255}.

For the construction of the S-box presented in this thesis the value of u and v are

chosen as u = 95, v = 15 then Equation (3.2) become

F (w) =
1

95w3 + 15
mod 257 (3.3)
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Figure 3.1: Flow chart of proposed S-box

The Equation (3.3) gives the value of Zn − {0, 106} when w ∈ Zn − {176, 184}.

This Eq, 3.3 gives 256 6∈ Zn at w = 176, and for w = 184 the denominator of

Equation (3.3) becomes 0 which contradicts the condition uw3 + v 6= 0. Hence the

modified CFT becomes as following:

F (w) =


1

uw3 + v
mod 257 if w ∈ Zn − {176, 184}

0 if w = 176

106 if w = 184

(3.4)
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This modified CFT as presented in Equation (3.4) generates the element of pro-

posed S-box, which are arranged in 16× 16 matrix in Table 3.1.

Table 3.1: S-Box

78 FA C1 B4 58 DF B9 70 D2 F2 E9 F1 5B 5F 35 AE

84 73 7D DC 4A 87 BE 50 48 68 2B 08 EF 26 C2 BA

B7 99 1F A0 74 9D 72 A5 30 0D 34 DD F4 3F 18 77

2E AB A9 9E 09 B1 2A 7B 8C 7A 6F D8 F5 62 46 C5

CB EB A8 BB 0E 1A 89 8A 65 3C E1 64 71 1C C3 92

1D C7 BD 56 D6 66 C8 27 B2 BF E3 2C 1B 0F F6 8D

90 86 FF 13 16 CC 12 8B 52 23 9C 39 D1 B5 4F 5D

BC E7 CE 61 4D 80 8F 9B A7 3B D0 AF FD 03 49 DA

3E 3D 2F 9F 4E 44 88 7E 3A 24 98 FC F9 2D 43 E5

36 38 63 06 5E C6 91 E2 AD F7 22 0B 55 57 F8 76

C0 D5 85 D4 ED 15 5C 14 D7 79 DB 31 6D 32 EE 40

00 B0 42 01 4C FE 96 DE 6A 81 CD 28 C4 7F E6 B3

9A 45 1E A3 21 0A 04 37 02 69 07 75 47 41 51 FB

94 AA B6 D9 E8 EC 97 7C E0 11 83 29 A6 A1 60 B8

6B 53 A2 25 82 AC E4 4B 19 67 F0 93 6C CF D3 EA

20 6E 33 17 10 C9 CA A4 0C 54 95 F3 8E 05 5A 59

As already mentioned that any value of u and v (u, v ∈ Zn) can be used in Equation

(3.2) to construct the elements of an S-box. The process to construct the S-box is

shown in Figure 3.1 for n = 8, u = 95 and v = 15.

3.1.2 Inverse S-box

The S-box is simply run in reverse to create the inverse S-box. For example, the

inverse S-box value of 78 is B0. Table 3.2 shows the inverse S-box element of the

proposed S-box.



S-box Construction Using Cubic Fractional Transformation (CFT) 39

Table 3.2: Inverse S-Box

B0 B3 C8 7D C6 FD 93 CA 1B 34 C5 9B F8 29 44 5D

F4 D9 66 63 A7 A5 64 F3 2E E8 45 5C 4D 50 C2 22

F0 C4 9A 69 89 E3 1D 57 BB DB 36 1A 5B 8D 30 82

28 AB AD F2 2A 0E 90 C7 91 6B 88 79 49 81 80 2D

AF CD B2 8E 85 C1 3E CC 18 7E 14 E7 B4 74 84 6E

17 CE 68 E1 F9 9C 53 9D 04 FF FE 0C A6 6F 94 0D

DE 73 3D 92 4B 48 55 E9 19 C9 B8 E0 EC AC F1 3A

07 4C 26 11 24 CB 9F 2F 00 A9 39 37 D7 12 87 BD

75 B9 E4 DA 10 A2 61 15 86 46 47 67 38 5F FC 76

60 96 4F EB D0 FA B6 D6 8A 21 C0 77 6A 25 33 83

23 DD E2 C3 F7 27 DC 78 42 32 D1 31 E5 98 0F 7B

B1 35 58 BF 03 6D D2 20 DF 06 1F 43 70 52 16 59

A0 02 1E 4E BC 3F 95 51 56 F5 F6 40 65 BA 72 ED

7A 6C 08 EE A3 A1 54 A8 3B D3 7F AA 13 2B B7 05

D8 4A 97 5A E6 8F BE 71 D4 0A EF 41 D5 A4 AE 1C

EA 0B 09 FB 2C 3C 5E 99 9E 8C 01 CF 8B 7C B5 62

3.2 Properties and Analysis of the Proposed S-

box

Substitution boxes have a prominent place in both modern and ancient public

key cryptography ciphers. In modern cryptography encryption scheme based on

cryptosystms of 4-bit and 8-bit S-boxes have vital importance. Robust cryp-

tosystem is based on strong S-boxes. Cryptographically strong S-boxes have high

non-linearity, bijection, linear and differential probability, strict avalanche and bit

independence criterion, and differential probability.

To show the strength of the suggested S-box its performance results are compared

to those S-boxes that have already been studied. The S-box has a number of

important cryptographic properties, which are listed below.
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1. Bijection: A function f : Bm → Bn is bijective if for all u ∈ Bm there

exists only a unique element v ∈ Bn, where B = {0, 1}. In other words,

when u = v, then f(u) = f(v) or equiuvalently u 6= v, then f(u) 6= f(v).

The proposed S-box is analyzed for the bijective property by using SET [48]

tool and it is found that it is bijective.

2. Balanced: The proposed S-box is tested for the balanced property using

the SET [48] tool, and it is discovered that all of the components of the

proposed S-box Boolean function are balanced.

Table 3.3: Comparing the non-linearity values of various S-boxes

S-Box Method Minimum Maximum Average

Vaicekauskas et al. [77] 98 108 102.5

Mahmoud et al. [78] 96 110 104.3

Hussain et al. [74] 98 108 104

Alkhaldi ei al. [79] 98 108 104

Chen et al. [80] 102 106 104

Belazi et al. [81] 102 108 105.3

Mahmood et al. [82] 100 110 105.5

Siddiqui, et al. [83] 104 106 105.3

Hussain et al. [84] 100 108 105.7

Hussain et al. [85] 100 108 104.8

Hussain et al. [86] 94 104 99.5

Proposed 104 108 106.75

3. Non-linearity: It is not advisable for an S-box operation to map an input

to an output linearly because this reduces the security of any cipher. The

NL(f) of the proposed substitution box are given in Table 3.4. The max-

imum non-linearity for an ideal S-box GF (28) is 120. The most important

cryptographic property of S-box is non-linearity. Below Table 3.3 show the

comparison of different S-boxes with proposed S-box.
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From Table 3.3 it is clearly shown that the average non-linearity is 106.75

which is greater then all other S-boxes [74, 77–86].

Table 3.4: S-box and non-linearity

f f1 f2 f3 f4 f5 f6 f7 f8

NL(f) 106 108 108 108 108 106 104 106

4. Strict Avalanche Criterion (SAC): An acceptable SAC value is the one

that is closer to 0.5. In order to fulfill the requirement, the Boolean function

must be 50 percent dependent on each of its input bits. The value of the

SAC of the S-box is given in Table 3.6 and it is observed that the maximum

value of the SAC of the S-box is 0.578125 and minimum value of the SAC

of the S-box is 0.421875 and the SAC of the S-box has an average value of

0.496582 which is approximately 0.5.

Table 3.5: BIC Value of S-box

0.0 102 106 104 102 102 100 104

102 0.0 104 106 98 100 104 108

106 104 0.0 102 104 102 108 100

104 106 102 0.0 98 106 108 102

102 98 104 98 0.0 104 102 108

102 100 102 106 104 0.0 104 108

100 104 108 108 102 104 0.0 104

104 108 100 102 108 108 104 0.0

5. Bit Independence Criterion (BIC): If a given S-box fulfill the BIC, all

of the components of a boolean function satisfy the SAC and have high

non-linearity. The Table 3.5 demonstrates the values of the BIC for all

Boolean functions of the S-box. The maximum and the minimum value for

the Boolean function of the S-box is 108 and 98 receptively and the average

value of BIC is 103.571.
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Table 3.6: SAC Value of S-box

0.453125 0.453125 0.515625 0.484375 0.515625 0.531250 0.531250 0.484375

0.468750 0.468750 0.468750 0.468750 0.515625 0.531250 0.437500 0.468750

0.515625 0.578125 0.468750 0.468750 0.468750 0.562500 0.515625 0.531250

0.531250 0500000 0.453125 0.546875 0.453125 0.453125 0.453125 0.468750

0.531250 0.515625 0.468750 0.515625 0.515625 0.468750 0.421875 0.531250

0.578125 0.531250 0.578125 0.453125 0.531250 0.437500 0.438750 0.484375

0.5546875 0.546875 0.500000 0.453125 0.515625 0.421875 0.484375 0.562500

00.531250 0.437500 0.484375 0.484375 0.453125 0.531250 0.484375 0.546875

6. Linear Probability (LP): The S-box’s resistance against linear attacks is

evaluated by linear probability. The lower LP increases the strength of the

S-box against the linear attack.

“The value of LP of an S-box is eveluated as” [71]:

LP = max
Cw,Dw 6=0

∣∣∣∣#{w ∈ Z|w · Cw = S(w) ·Dw}
2n

− 1

2

∣∣∣∣
where Cw and Dw are the input and output masks and Z = {0, 1, 2, ..., 2n−

1}.

The S-box has maximum value of LP 0.1484.

7. Differential Probability (DP): The S-box’s resistance against differential

attacks is evaluated by differential probability. An S-box with a lower DP is

more resistant to differential cryptanalysis.

The Table 3.7 shows the value of DP of the S-box. The maximum value of

DP of the S-box 10 and the DP of the S-box is 0.0391.

8. Bent Boolean: By using the SET [48] it is found that Bent Non-linearity

value of proposed S-box is 116.6863

9. Algebraic Immunity (AI): The algebraic immunity of proposed substitu-

tion box is 4.

10. Fixed Points: The proposed S-box has no fixed point.
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11. Opposite Fixed Points: The proposed substitution box has no opposite

fixed point.

12. Absolute Indicator and Sum of Square Indicator: The absolute indi-

cator of substitution box is 104, where the sum of square indicators of S-box

is 289792.

13. Algebraic Degree: The higher the degree of a function, the more complex

its algebraic structure and the more resistant it is to low approximation

attacks. It is suggested that algebraic degree is equal to or greater than

4 to avoid higher-order differential cryptanalysis. The algebraic degree of

proposed substitution box is 7.

Table 3.7: DP Value of S-box

0.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 6.0 6.0 8.0 6.0 10.0 6.0 6.0 6.0

8.0 8.0 8.0 6.0 8.0 6.0 8.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 6.0

6.0 6.0 6.0 8.0 6.0 8.0 8.0 6.0 6.0 6.0 6.0 8.0 6.0 6.0 6.0 6.0

8.0 6.0 10.0 6.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 4.0 6.0 6.0 8.0 8.0

6.0 6.0 6.0 6.0 8.0 6.0 8.0 8.0 8.0 6.0 8.0 8.0 8.0 6.0 8.0 6.0

6.0 6.0 6.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 6.0 6.0 6.0 6.0

6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 6.0 6.0 6.0 6.0 6.0 8.0 10.0

6.0 8.0 6.0 6.0 6.0 8.0 6.0 8.0 6.0 6.0 6.0 6.0 8.0 6.0 10.0 6.0

6.0 8.0 8.0 6.0 6.0 6.0 8.0 6.0 6.0 6.0 8.0 6.0 8.0 6.0 10.0 10.0

6.0 8.0 6.0 8.0 6.0 8.0 8.0 6.0 8.0 6.0 8.0 6.0 10.0 8.0 6.0 8.0

8.0 6.0 6.0 6.0 8.0 6.0 6.0 6.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0

6.0 8.0 8.0 6.0 8.0 8.0 6.0 8.0 6.0 6.0 8.0 6.0 6.0 6.0 6.0 8.0

8.0 6.0 6.0 6.0 8.0 6.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 6.0 8.0

6.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 8.0 6.0 8.0 8.0 6.0 6.0 8.0 6.0

6.0 6.0 6.0 6.0 8.0 6.0 8.0 8.0 8.0 6.0 6.0 6.0 8.0 6.0 6.0 8.0

6.0 8.0 8.0 6.0 6.0 6.0 6.0 8.0 8.0 8.0 6.0 6.0 6.0 6.0 6.0 8.0



Chapter 4

Logistic Map and S-box Based

Image Encryption

With the development of internet technology, a lot of information is transferred

from one end to the other in the form of data and images. Security should be

provided to ensure the confidentiality of any information, whether it relates to

the military, the defense, or the medical field. With the advancement of image

encryption technology comes the advancement of image information theft technol-

ogy [87]. To keep up with the developing information theft technology, a better

image encryption algorithm is required.

An image is an artwork that illustrates visual perception, such as a photograph

or other 2-dimensional depiction. It is described as a 2-variable function, f(x, y),

where each position in the image plane (x, y), corresponds to the light intensity

at that position. There are two types of images: digital image and analog image.

Analog images are represented mathematically as a continuous range of values

representing position and intensity. The Digital image is composed of the picture

element known as Pixel. Each pixel in an image has consists intensity number,

or a tiny set of numbers that define some feature of the pixel, like its brightness

or colour. It is used in everyday life, such as satellite television and magnetic

resonance imaging, as well as in research, such as astronomy and geographical

information systems.

44
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The process of encrypting an image using an encryption algorithm is known as

image encryption. The successful transmission of sensitive information using en-

crypted images has led to the development of countless techniques. However,

despite the phenomenal rise in the use of images in all forms of digital communi-

cation, it still draws researchers.

4.1 Basic Terminologies

There are some basic terms and terminalogies that are commonly used for image

encryption schemes. These terminalogies are discussed as following:

4.1.1 Digital Image

A digital image is a numeral portrayal of an image that can be stowed and pro-

cessed by a digital computer. The numeral representation of an image is divided

into small parts that are called pixels. Each pixel in an image has consists inten-

sity number, or a tiny set of numbers that define some feature of the pixel, like

its brightness or colour. The numbers are grouped in an assemblage of rows and

columns that delineate the image’s vertical and horizontal pixel positions.

4.1.1.1 Pixel

A pixel (pix-el) is abbreviation of picture element. A digital image is composed of

many of these pixels. This means that the image is a collection of different pixels.

The colors in any pixel are the functions of red, green, and blue portions.

4.1.2 Component of Image Encryption Cryptosystem

1. Plainimage: This is the type of image that requires protection while being

transmitted over a public network. It is also referred to as the source or

input image.
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2. Cipherimage or Encrypted Image: A cipherimage is the converted form

of a plainimage into an unintelligible form after encryption.

3. Encryption: A plainimage is converted into a cipherimage using an encryp-

tion method and a secret key in this process.

4. Decryption: The cipherimage is converted to a plainimage by the receiver

side using a decryption method and a secret key. This is referred to as

decryption.

5. Key: The key determines the encryption method’s security. It can be ei-

ther numeric or alphanumeric. The key is required for both encryption and

decryption to be performed. Strong keys are always required for better in-

formation security.

4.2 Chaotic Map

The chaotic map is a mathematical structure that shows some kind of chaotic

behavior. Random sequences are generated using a chaotic map. A discrete-time

and continuous-time parameter can be used to parameterize the maps. Discrete

maps are typically iterated functions. The output of such maps is very dependent

on the control parameters and initial conditions. When using chaotic maps in

cryptography, these parameters can be treated as secret keys. Many chaotic maps

exhibit chaotic behavior on a specific control parameter region.

Chaotic cryptology is divided into two branches: chaotic cryptography and

chaotic cryptanalysis. Chaotic cryptography encrypts information, while chaotic

cryptanalysis decrypts the encrypted messages. Chaos-based cryptography has

gained so much attention that it now has a vast range of uses in different of fields,

including telecommunications, medical imaging, video, image, DNA cryptography,

and others.
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4.2.1 Lyapunov Exponent

In the study of dynamical systems, the term ’Lyapunov Exponent’ (LE) [88] is

commonly used. LE is a quantitative measure of the sensitivity to initial con-

ditions. The degree of divergence between two close trajectories of a dynamical

system is described by LE. A positive LE indicates that, no matter how near the

two trajectories are, the divergence between them grows with each iteration, in

the end making them be totally unique. LE is defined as follows:

Λ = lim
m→∞

1

m

m−1∑
j=1

ln |f ′(x̂)| (4.1)

To obtain an average LE, the LE can be evaluated for sample points near the

attractor. “If the average LE is negative, then the system is periodic; if at least

one of the average LE is positive, then the system is chaotic; if the average LE is

zero, a bifurcation occurs. The more chaotic a system, the higher the value of the

LE” [89].

4.2.2 Bifurcation Diagram

A bifurcation occurs, which tells a period-doubling change from an M -point at-

tractor to a 2M -point attractor. A bifurcation diagram is a visual representation

of the succession of period-doublings that occurs as γ increases. By displaying the

parameter value against all related equilibrium values, the bifurcation diagram is

created. If a small change in the bifurcation parameters results in a large change

in the system behaviour, the bifurcation appears. This characteristic occurs in

both continuous and discrete systems.

4.3 Logistic Map

The Logistic map is a second degree polynomial mapping. Is is one dimensional

chaotic map [90]. Its mathematical structure is simple, but its chaotic behaviour
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is complex. Logistic mapping is a non-linear, discrete-time, one-dimensional map

with quadratic non-linearity. It is defined by the equation below:

tn+1 = γ × tn (1− tn) (4.2)

where γ ∈ [0, 4] and tn ∈ (0, 1). The value of γ is the most essential part of the

logistic map expression because it determines the chaotic behaviour:

• When γ ∈ (0, 1), the points on the logistic map’s expression graph approach

0, independently of the value t0. [91].

• When γ ∈ [1, 2),the points on the logistic map’s expression graph approach

the value γ−1
γ

[91].

Figure 4.1: Lyapunove exponent of Logistic map

• When γ ∈ [2, 3), the points on the logistic map’s expression graph approach

the value γ−1
γ

, but on an initial phase, they will vary around this value [91].
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• When γ ∈ [3, 3.44949), the points on the logistic map’s expression graph vary

between two values, lets denote them t1 and t2. t1 and t2 are independent of

γ [91].

• When γ ∈ [3.44949, 3.54409), the points on the logistic map’s expression

graph will vary between four values, t1, t2, t3, t4. When γ increases until

it has a value of approximately 3.56995, the points on the logistic map’s

expression graph will vary between eight values, then sixteen values, and so

on [91].

• When γ ∈ [3.56995, 4],the points on the logistic map’s expression graph are

placed chaotically, and it is said that the map is in the chaotic state. The

value of n for which the map is stopped is called the dimension of the logistic

map [91].

Figure 4.1 shows the logistic map’s Lyapunove exponent. Figure 4.2 shows the

logistic map’s bifurcation diagram.

Figure 4.2: Bifurcation diagram for the Logistic map with iterations = 65536
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4.4 Image Encryption Algorithm

In this section, S-box and logistic map based encryption algorithm is suggested for

image encryption. In this algorithm, an S-box is generated by using a cubic fraction

transformation. S-box generation algorithm is described in the previous Chapter

3. The gray-scale image of size n×m, where n and m represent the number of rows

and columns of a gray-scale image respectively. First, the image is converted into

its pixel matrix. Then design of the proposed S-box based encryption algorithm is

described. Then, a row and column circular permutation is applied. At the end,

the scrambling process is applied by taking bit-wise XOR with secret key that is

constructed by using the logistic map.

4.4.1 Encryption Algorithm (Gray-scale)

For the encryption purpose a gray-scale image I of size (n ×m) of clock is used,

where n and m are the number of rows and columns of a I respectively. The size

of the gray-scale image that is used for encryption is 256 × 256. The encryption

process is described below:

Algorithm 1: Substitution algorithm

Input: Image (I), Secret key k0, S-box generated by CFT Chapter 3

Output: Substituted Image

1 Read the gray-scale secret image I.

2 Create a digital form of the gray-scale image I with a size of M , where n×m is

the size of image matrix with integer entries lies in the range of [0, 255] and n,m

are the rows and columns in M respectively.

3 Using the secret key k0 = (u0, v0) for CFT Chapter 3 to generate an S-box 3.1

take only those values that lies in [0, 255].

4 Replace each entry of pixel value matrix mi of the image

M = {m1,m2,m3, . . . ,mi} by S(mi) where i ∈ {1, 2, 3, . . . , n×m}. After

substitution of the pixel value matrix with S-box, the resultant array is denoted

by S ′ which is {s1, s2, s3, . . . , si}.
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Permutation Algorithm: A suitable permutation is used to change the pixel

positions of the substituted image S ′. The Cubic Fractional Transformation (CFT)

is used to generate the permutation array.

F (w) =


1

uw3 + v
mod (257) if w ∈ Zn − {43, 135}

0 if w = 43

11 if w = 135

(4.3)

Here u = 90 and v = 20. The Equation (4.3) gives the value of Zn−{0, 11} when

w ∈ Zn − {43, 135}.

F (w) =


1

uw3 + v
mod (257) if w ∈ Zn − {176, 62}

0 if w = 142

40 if w = 62

(4.4)

Here u = 115 and v = 45. The Equation (4.4) gives the value of Zn − {0, 40}

when w ∈ Zn − {142, 62}.
Algorithm 2: Permutation Algorithm

Input: S ′, Secret key k1 and k2, CFT Equations (4.3) and (4.4)

Output: Pre-encrypted Image P

1 Utilize the same algorithm as used in Chapter 3 to construct the elements of the

sequences S1 = {s11, s12, s13, . . . , s1m} and S2 = {s21, s22, s23, . . . , s2n} by using

Equations (4.3) and (4.4) and secret keys k1 = (u1, v1) and k2 = (u2, v2).

2 Apply a column-wise circular shift on substitution image S ′. Use the value of S1

to permute the value of substitution image S ′. The resulting matrix is stored in

P ′.

3 After applying a column-wise circular shift on image S ′, another row-wise

circular shift is applied on image P ′ with the help of S2. The resulting matrix is

saved in P .
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After the permutation layer, a Logistic map (4.2) and a Boolean operation XOR is

used to get final encrypted image.

Algorithm 3: Scrambling Process

Input: Pre-encrypted image P , Logistic Map (4.2) and Secret key k3

Output: Final Encrypted image C

1 Iterate the logistic map (4.2) using initial state t0 and control parameter γ as

secret key k3 for W times to create a chaotic sequence of length W .

2 Convert the obtained sequence by iterating Logistic map into 8-bit integer values

using the following relation:

X = mod (floor(x× 1014), 256)

3 To eliminate the transient impact, dispose off the first (L− (n×m)) numbers of

the chaotic sequence, then generate a new chaotic sequence of length 65536,

denoted by SK.

4 Rewrite matrix P as one dimensional array P ′′ = {p′′1, p′′2, p′′3, . . . , p′′n×m}.

5 Then the scrambling process is performed as following:

for i = 1 and j = 1 : n×m

if j = 1, then

C(i, j)← P ′′(i, j)⊕ Sk(i, j);

else

C(i, j)← C(i, j − 1)⊕ P ′′(i, j)⊕ Sk(i, j);

end

end

Covert the array into n×m matrix obtained from scrambling.

6 In the end, a cipherimage C is created by converting the resulting matrix of pixel

values into an image format.
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Figure 4.3: Flow chart of image encryption algorithm

4.5 Decryption Algorithm (Grayscale)

The decryption algorithm eridicate all encryption effects from the original image.

The following steps are used to recover the plainimage I from the cipherimage C:
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Algorithm 4: Decryption Algorithm

Input: Cipherimage, Secret key k1, k2 and k3

Output: Original Image I

1 After receiving the cipherimage, the receiver converts the cipherimage into

digital form N , where N is the pixel value matrix of n×m size with entries from

0 to 255.

2 Convert the encrypted image into one dimensional array of length n×m.

3 Perform the unscrambling process as described below:

for i = 1 and j = 1 : m× n

if j = 1, then

P ′′(i, j)← C(i, j)⊕ SK(i, j);

else

P ′′(i, j)← (i, j − 1)⊕ C(i, j)⊕ SK(i, j);

end

end

Rewrite P ′′ into 2-dimension matrix P .

4 Construct the sequence S1 = {s11, s12, s13, . . . , s1m} and

S2 = {s21, s22, s23, . . . , s2n} by using Equations (4.3) and (4.4) of Cubic

Fractional Transformation and secret key k1 = (u1, v1) and k2 = (u2, v2).

5 Apply a reverse row-wise circular shift on P by using the element of S2. Then

resulting matrix is stored in P ′.

6 Another reverse column-wise circular shift is applied with the help of the array

S1. Hence generated resulting matrix is stored in S ′.

7 Generate an S-box ‘S’ by using the method mentioned in Chapter 3.

8 Construct the inverse S-box of S that is S−1.

9 Replace each pixel value s′i of the matrix S ′ by using inverse S-box generated in

step 8,as S−1(s′i) where i ∈ {1, 2, 3..., n×m}. After replacing the pixel values of

S ′ with the inverse S-box, the resultant pixel matrix is I.
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Figure 4.4: Flow chart of image decryption algorithm

Example 4.5.1.

The encryption process is illusted through the following toy example.

Let the pixel matrix of an image I given. For simplicity, a 4 × 4 hypothetical

image is considered.
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I =


184 161 179 186

175 118 118 120

158 126 140 105

137 123 98 82



Encryption Phase

By applying the S-box from Table 3.1 to the image I as described in Step 5 of the

Algorithm (1), the resulting image S ′ is;

S ′ =


106 213 1 205

64 143 143 167

87 73 249 35

36 175 255 189


After applying S-box, the new resulting image S ′ is then permuted by using circular

shift. Hence generated pre-encrypted image P . Using Equations (4.3) and (4.4)

generate two arrays S1 and S2 of length m and n respectively. These arrays are

shown as follows:

S1 = {4, 1, 3, 2}, S2 = {3, 2, 1, 4}

Then apply column-wise circular shift operation by using S1 array on S ′. This

results a p′ image. Then another row-wise circular shift operation is applied by

using S2 on P ′. Hence obtained the new matrix is P . That is a pre-encrypted

image.

P ′ =


106 143 255 35

64 73 1 189

87 175 143 205

36 213 249 167

 , P =


35 106 143 255

1 189 64 73

175 143 205 87

36 213 249 167


Converting this matrix P into one dimensional array P ′′ as shown below:

P ′′ = {35, 1, 175, 36, 106, 189, 143, 213 , 143, 64, 205, 249, 255, 73, 87, 167}
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Iterate the logistic map (4.2) to generate a random sequence SK by using secret

key k3 containing γ, to where γ = 3.995 and to = 0.15.

SK = {13, 86, 38, 144, 9, 233, 176, 172, 112, 230, 56, 169, 161, 110, 115, 184}

Then the scrambling process is performed by taking XOR of each element with

its corresponding element of key matrix and also with its preceding element as

illustrated in Step 5 of the Algorithm (3) to get cipherimage as following:

C = {46, 121, 240, 68, 39, 115, 76, 53, 202, 108, 153, 201, 151, 176, 148, 139}

Convert this formed array C into 2-dimension matrix form. The resulting cipher

matrix is given below.

C =


46 39 202 151

121 115 108 176

240 76 153 148

68 53 201 139



Decryption Phase

The decryption process demonstrate as following.

Consider C as a pixel matrix of a cipherimage.

C =


46 39 202 151

121 115 108 176

240 76 153 148

68 53 201 139


Convert the C into one dimensional array as:

C = {46, 121, 240, 68, 39, 115, 76, 53, 202, 108, 153, 201, 151, 176, 148, 139}

Iterate the logistic map (4.2) to generate the random sequence SK by using secret

key k3 containing γ, to where γ = 3.995 and to = 0.15.



Logistic Map and S-box Based Image Encryption 58

SK = {13, 86, 38, 144, 9, 233, 176, 172, 112, 230, 56, 169, 161, 110, 115, 184}

Apply the unscrambling process by taking XOR operation of each element of C

with corresponding element of array SK and also with its preceding element as

illustrated in Step 3 of the Algorithm (4). The obtaining array is stored in P ′′.

P ′′ = {35, 1, 175, 36, 106, 189, 143, 213 , 143, 64, 205, 249, 255, 73, 87, 167}

Rewrite P ′′ into 2-dimension matrix P .

P =


35 106 143 255

1 189 64 73

175 143 205 87

36 213 249 167


Using Equations (4.3) and (4.4) to generate two array S1 and S2 of length m and

n respectively. These arrays are shown as follows:

S1 = {4, 1, 3, 2}, S2 = {3, 2, 1, 4}

Then apply reverse row-wise circular shift by using array S2 on P . After applying

reverse row-wise circular shift the resulting matrix is stored as P ′. Then another

reverse column-wise circular shit applied by using the element of array S1 on P ′.

Hence the resulting matrix is S ′.

P ′ =


106 143 255 35

64 73 1 189

87 175 143 205

36 213 249 167

 , S ′ =


106 213 1 205

64 143 143 167

87 73 249 35

36 175 255 189



By using the method mentioned in Chapter 3 generate the element of an S-box S.

Construct the inverse S-box of S that is S−1. Then applying the inverse S-box to

the image S ′ as described in Step 9 of the Algorithm (4) gives I as;
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I =


184 161 179 186

175 118 118 120

158 126 140 105

137 123 98 82


Finally, image I can be obtained in its original form.

4.6 Results and Discussions

The tests are performed to demonstrate the efficiency and validity of the suggested

algorithm. This algorithms (1), (2) and (3) have been applied on different images

such as Clock, House, Girl and Chemical Plant using MATLAB R2017a. These

images are from the http://sipi.usc.edu/database/, known as the USC-SIPI open

image repository.

Figure 4.5: Results of Clock Image encryption and decryption algorithm: (a)
plainimage, (b) Encrypted Image, (c) Decrypted Image

The standard gray image of Clock (256 × 256) is used in first example shown in

Figure 4.5(a). After applying the encryption algorithm the cipherimage is depicted

in Figure 4.5(b). The decryption algorithm (4) is then used for decoding the

cipherimage, as shown in Figure 4.5(c). The decryption result demonstrates that

the proposed algorithm is effective in recovering the original image.

In the next example a Chemical Plant image of sizes (256 × 256) is chosen. The

image is displayed in Figure 4.6(a), the encryption result is shown in 4.6(b). The
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decryption algorithm is then used to perform the decoding the cipherimage, as

shown in Figure 4.6(c). The decryption result demonstrates that the proposed

algorithm is effective in recovering the plainimage.

Figure 4.6: Results of Chemical Plant image encryption and decryption algo-
rithm: (a) plainimage, (b) Encrypted Image, (c) Decrypted Image

4.6.1 Security Analysis

There are some security assessments that examine the quality of encryption these

includ key space, key sensitivity, differentioal analysis correlation coefficients, en-

tropy and histogram analysis.

4.6.1.1 Key Space

Any cryptosystem considers key space as an important feature. It must be large

enough to withstand brute force attacks. The key space 1030 ≈ 2100 [92] is the rec-

ommended for high security and protection from brute-force attacks. One common

attack is the brute-force attack, in which an assailant endeavours to figure out the

right security keys by exorbitantly looking of an encryption algorithm excessively.

As a result, an adequate and enormous key space makes sure that the encryption

algorithm is resistant to a brute-force attack. In encryption algorithm, a Cubic

Fractional Transformation (CFT) and Logistic map are used. CFT involve u and

v as parameter and Logistic map involves γ as control parameters and t as a vari-

able. The key is a comprising of 4 secret keys k = (k0, k1, k2, k3). The number of



Logistic Map and S-box Based Image Encryption 61

possible key combinations is 2147. The resulting keyspace exceeds the minimum

key size requirement.

4.6.1.2 Key Sensitivity Analysis

The secret key should be well known to the image encryption scheme, and changing

a single bit of the secret key should result in a completely different encrypted

result. An effective image encryption scheme must be key sensitive in order to

prevent unauthorized preliminary attacks. Even if the encryption key changes

slightly, the cipher image should not be decrypted accurately. For example, by

adding 0.000000000000005 to the parameter “γ” of the secret key in the encryption

scheme, the parameter’s new value will be 3.995000000000005. The original image

will not be obtained by using this to decrypt.

The plainimage of Clock is represented in Figure 4.7(a), the encrypted image in

Figure 4.7(b), and the decryption results are achieved with a slightly different key

in Figure 4.7(c). This shows that the algorithm is extremely sensitive to key.

Figure 4.7: Key sensitivity test for Clock: (a) Plainimage (b) Encrypted image
(c) Decrypted image by slightly changed key

4.6.1.3 Differential Analysis

Images encrypted with a high-performance image encryption method should ap-

pear completely different from plainimages; this is one of its key characteristics.

Therefore the number of pixel change rate (NPCR) and unified average changing

intensity (UACI) are used to compare an encrypted image to the original image
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and the encrypted image after changing one pixel in the original image. The NPCR

and UACI values can be calculated as;

NPCR =

∑
i,jM(i, j)

w × h
× 100 (4.5)

UACI =
1

w × h

[∑
i,j

|Y (i, j)− Y ′(i, j)|
255

]
× 100 (4.6)

Here w and h represent the encrypted image’s width and height, respectively. Y

and Y ′ are cipherimages generated from plainimages and by plane images with

a difference of one pixel, respectively. If Y = Y ′ then M(i, j) = 0 otherwise 1.

The values of NPCR and UACI should be high and close to their ideal values

to withstand differential attacks. Table 4.1 show the NPCR and UACI value

performance for the proposed schemes is perfect. As a result, it will providegreat

resistance to “known plaintext attacks” and “chosen plaintext attacks”.

Table 4.1: UACI and NPCR values of encrypted images

Images Clock House Girl Chemical Plant Tree

NPCR 99.6154 99.6292 99.6688 99.5910 99.6047

UACI 33.3538 33.2600 33.4429 33.3423 33.2128

4.6.1.4 Correlation Coefficients Analysis (CCA)

Correlation coefficients is a powerful tool for determining the rate of success of

an attack on an encrypted image. Correlation is used to connect adjacent pix-

els that have correlation coefficients. A good encryption algorithm minimizes the

correlation coefficient between pairs of encrypted neighboring pixels in the ver-

tical, horizontal, and diagonal directions. The Correlation Coefficients (CC) is

calculated as following:

Ca,b =
cov(a, b)√

D(a)×
√
D(b)

(4.7)
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where a and b are the grayscale values of two pixels from the input image. D(a)

and D(b) are the variances of a and b, respectively. cov(a, b) represents the a

and b covariance. The following equations are used to calculate the correlation

coefficients:

cov(a, b) =
1

K

K∑
j=1

(aj −X(a))(bj −X(b))

X(a) =
1

K

K∑
j=1

aj

D(a) =
1

K

K∑
j=1

(aj −X(a))2

The test outcomes are shown in Table 3.5. The data show that the CC in the

cipherimage produced by above mentioned formula’s. It can be seen from Table

4.2 that correlation coefficient of cipherimage are closer to zero.

Table 4.2: Two adjacent pixels’ correlation coefficient in a plain and cipher
image.

Images Clock House Girl

Direction Original Cipher Original Cipher Original Cipher

Horizontal 0.9740 -0.0057 0.9529 -0.0065 0.9656 0.0053

Vertical 0.9564 0.0036 0.9782 -0.0072 0.9740 -0.0057

Diagonal 0.9389 -0.0054 0.9360 -0.0027 0.9515 -0.0018

4.6.1.5 Entropy Analysis

Data entropy was first presented by Shannon in 1948 [93]. In cryptography, the

term “entropy” refers to the randomness that a system accumulates for use in

techniques that uses random data. Lack of entropy can make a cryptosystem

susceptible and prevent it from securely encrypting data.

This component of examination estimates the randomness in a coded image. It

additionally lets us know the typical measure of data conveyed by the coded image.
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If β is an encrypted image then entropy of β can be determined by the following

equation.

E(β) =
2N−1∑
j=0

P (βj) log2

1

P (βj)
(4.8)

P (βj) in equation 4.8 represents the probability of symbol βj appearing in cipher

image β. For a (256 × 256) grayscale image, the ideal value of the entropy is

8. Table 4.3 shows the entropy values of different images encrypted using the

proposed schemes. The result shows that the resulting entropy of the proposed

encryption algorithm is very close to the ideal entropy.

Table 4.3: Entropy analyses

Images Clock House Girl Chemical Plant Tree

Plainimage 6.7056 6.4961 7.0524 7.0817 7.3102

Cipherimage 7.9973 7.9977 7.9975 7.9969 7.9975

4.6.1.6 Histogram Analysis

An image histogram usually refers to a histogram of pixel intensity values. His-

togram of the image is a graph which shows the pixel value at each of the different

intensity values found in that image. 256 different intensities are possible for a

8-bit grayscale image, so the histogram will graphically display 256 numbers show-

ing the distribution of pixels amongst those grayscale values.

For a high-security image encryption algorithm, the encrypted image must have a

histogram with a uniform distribution. Figure 4.8 shows the plain and cipherim-

age histograms for the image clock. It is clear that, there is no hint of a statistical

attack on the cipherimage.
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Figure 4.8: The following is the encryption result for the grayscale image of
Clock: (a) Plainimage (b) Encrypted image (c) Histogram of plainimage

(d) Histogram of encrypted image

Figure 4.9: Histogram analysis of chemical plant plainimage and cipherimage
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Figure 4.10: Histogram analysis of girl plainimage and cipherimage

Figure 4.11: Histogram analysis of house plainimage and cipherimage
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Figures 4.9, 4.10 and 4.11 shows histogram analysis of different plainimage and

cipherimage.



Chapter 5

Conclusion

An S-box generation scheme based on cubic fractional transformation is reviewed.

The method used to construct an S-box is simple and effective. The constructed

S-box is highly non-linear from some old S-boxes [74, 77–86]. It has low linear

probability (LP) and differential probability (DP), so the proposed S-box resists

differential and linear cryptanalysis attacks. Security analysis shows that the

proposed S-box is very useful in modern block cipher. The base of best knowledge

it can be said that this method is the first method to create an S-box from the

cubic fractional transformation (CFT). The construction procedure is completed

on MATLAB and both an S-box and inverse S-box are produced.

As such, S-box ia an important component of the block encryption algorithm.

They play an important role in creating confusion and diffusion. After creating

the S-box, it is used in the image encryption algorithm for substitution purpose.

After this, different circular shifts are performed to create more confusion. Finally,

a chaotic map is used to generate a random sequence and it is used for scrambling

the pixels of the image by applying the XOR operation. Entropy analysis, key

sensitivity analysis, key space analysis, statistical analysis, and differential analysis

are all tools used in security analysis. Security analysis shows that it is not possible

to obtain the original image through cryptographic attacks. Which tells that this

encryption algorithm is a secure algorithm and can be used for image encryption

algorithm. This algorithm can also be used for encrypting images of different types

and size.
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